HSI
From: Bayesian Models for Astrophysical Data, Cambridge Univ. Press
(c) 2017, Joseph M. Hilbe, Rafael S. de Souza and Emille E. O. Ishida
you are kindly asked to include the complete citation if you used this material in a publication
​
​
Code 6.9 Synthetic negative binomial data and model in R
====================================================
library(MASS)
​
set.seed(141)
nobs <- 2500
​
x1 <- rbinom(nobs,size=1, prob=0.6)
x2 <- runif(nobs)
xb <- 1 + 2.0*x1 - 1.5*x2
a <- 3.3
theta <- 0.303 # 1/a
exb <- exp(xb)
nby <- rnegbin(n=nobs, mu=exb, theta=theta)
negbml <- data.frame(nby, x1, x2)
​
nb2 <- glm.nb(nby ~ x1 + x2, data=negbml)
​
summary(nb2)
====================================================
Output on screen:
​
Call:
glm.nb(formula = nby ~ x1 + x2, data = negbml, init.theta = 0.295684269,
link = log)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.58697 -1.12176 -0.78956 0.06661 3.05031
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.98613 0.08845 11.15 <2e-16 ***
x1 2.03995 0.08081 25.24 <2e-16 ***
x2 -1.61330 0.13544 -11.91 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for Negative Binomial(0.2957) family taken to be 1)
​
Null deviance: 3030.9 on 2499 degrees of freedom
Residual deviance: 2355.5 on 2497 degrees of freedom
AIC: 11553
Number of Fisher Scoring iterations: 1
​
Theta: 0.2957
Std. Err.: 0.0108
2 x log-likelihood: -11544.6130