HSI
From: Bayesian Models for Astrophysical Data, Cambridge Univ. Press
(c) 2017, Joseph M. Hilbe, Rafael S. de Souza and Emille E. O. Ishida
you are kindly asked to include the complete citation if you used this material in a publication
​
​
# Data from code 6.2
set.seed(18472)
nobs <- 750
​
x1_2 <- rbinom(nobs,size=1,prob=0.7)
x2 <- rnorm(nobs,0,1)
xb <- 1 - 1.5*x1_2 - 3.5*x2
​
exb <- exp(xb)
py <- rpois(nobs, exb)
pois <- data.frame(py, x1_2, x2)
poi <- glm(py ~ x1_2 + x2, family=poisson, data=pois)
​
​
Code 6.3 Bayesian Poisson model using R
=========================================
library(MCMCpack)
​
mypoisL <- MCMCpoisson(py ~ x1_2 + x2,
burnin = 5000,
mcmc = 10000,
data = pois)
summary(mypoisL)
​
plot(mypoisL)
=========================================
Output on screen:
​
Iterations = 5001:15000
Thinning interval = 1
Number of chains = 1
Sample size per chain = 10000
1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:
Mean SD Naive SE Time-series SE
(Intercept) 1.003 0.010538 1.054e-04 0.0003470
x1_2 -1.507 0.004699 4.699e-05 0.0001528
x2 -3.501 0.004214 4.214e-05 0.0001395
2. Quantiles for each variable:
​
2.5% 25% 50% 75% 97.5%
(Intercept) 0.982 0.9961 1.003 1.011 1.023
x1_2 -1.516 -1.5102 -1.507 -1.504 -1.498
x2 -3.509 -3.5036 -3.501 -3.498 -3.493