top of page

From: Bayesian Models for Astrophysical Data, Cambridge Univ. Press

(c) 2017,  Joseph M. Hilbe, Rafael S. de Souza and Emille E. O. Ishida  

 

you are kindly asked to include the complete citation if you used this material in a publication

​

​

Code 4.11  -  Normal linear model in Python using Stan and including errors in variables

==================================================

import numpy as np
import statsmodels.api as sm
import pystan

from scipy.stats import norm

​

# Data
np.random.seed(1056)                                      # set seed to replicate example
nobs = 1000                                                      # number of obs in model 
sdobsx = 1.25


truex =  norm.rvs(0,2.5, size=nobs)                 # normal variable
errx = norm.rvs(0, sdobsx, size=nobs)            # errors
obsx = truex + errx                                          # observed

​

beta0 = -4
beta1 = 7           
sdy = 1.25
sdobsy = 2.5

​

erry = norm.rvs(0, sdobsy, size=nobs)
truey = norm.rvs(beta0 + beta1*truex, sdy, size=nobs)
obsy = truey + erry

​

# Fit
toy_data = {}                                                 # build data dictionary
toy_data['N'] = nobs                                      # sample size
toy_data['obsx'] = obsx                                 # explanatory variable       
toy_data['errx'] = errx                                   # uncertainty in explanatory variable
toy_data['obsy'] = obsy                                 # response variable
toy_data['erry'] = erry                                   # uncertainty in response variable
toy_data['xmean'] = np.repeat(0, nobs)        # initial guess for true x position


# STAN code
stan_code = """
data {
    int<lower=0> N;                                 
    vector[N] obsx;                     
    vector[N] obsy;     
    vector[N] errx; 
    vector[N] erry;     
    vector[N] xmean;        
}
transformed data{
    vector[N] varx;
    vector[N] vary;

    for (i in 1:N){ 
        varx[i] = fabs(errx[i]);
        vary[i] = fabs(erry[i]);
    }
}
parameters {
    real beta0;
    real beta1;                                             
    real<lower=0> sigma;
    vector[N] x;
    vector[N] y; 
}
transformed parameters{
    vector[N] mu;

    for (i in 1:N){ 
        mu[i] = beta0 + beta1 * x[i];
    }
}
model{
    beta0 ~ normal(0.0, 100);                                # Diffuse normal priors for predictors
    beta1 ~ normal(0.0, 100);

    sigma ~ uniform(0.0, 100);                              # Uniform prior for standard deviation

​

    x ~ normal(xmean, 100);
    obsx ~ normal(x, varx);
    y ~ normal(mu, sigma);


    obsy ~ normal(y, vary);
}
"""

​

# Run mcmc
fit = pystan.stan(model_code=stan_code, data=toy_data, iter=5000, chains=3,
                           n_jobs=3, warmup=2500, verbose=False, thin=1)

​

# Output
nlines = 8                                                          # number of lines in screen output

​

output = str(fit).split('\n')
for item in output[:nlines]:
    print(item)   

​

==================================================

Output on screen:

​

Inference for Stan model: anon_model_67c119e36d7078f1959ee01e91c0bab6.
3 chains, each with iter=5000; warmup=2500; thin=1; 
post-warmup draws per chain=2500, total post-warmup draws=7500.

​

              mean      se_mean        sd       2.5%       25%       50%      75%      97.5%      n_eff       Rhat
beta0      -3.73          2.5e-3     0.14      -4.02      -3.83      -3.73     -3.64        -3.45        3218        1.0
beta1       6.68          2.0e-3     0.06       6.56        6.65       6.69       6.72           6.8          888        1.0
sigma      1.67             0.01       0.2       1.31        1.54       1.67       1.79         2.09          238       1.02

bottom of page