HSI
From: Bayesian Models for Astrophysical Data, Cambridge Univ. Press
(c) 2017, Joseph M. Hilbe, Rafael S. de Souza and Emille E. O. Ishida
you are kindly asked to include the complete citation if you used this material in a publication
​
​
​
Code 4.10 Normal linear model in R using JAGS and including errors in variables
==================================================
require(R2jags)
# Data
set.seed(1056) # set seed to replicate example
nobs = 1000 # number of obs in model
sdobsx <- 1.25
truex <- rnorm(nobs, 0, 2.5) # normal variable
errx <- rnorm(nobs, 0, sdobsx)
obsx <- truex + errx
​
beta1 <- -4
beta2 <- 7
sdy <- 1.25
sdobsy <- 2.5
​
erry <- rnorm(nobs, 0, sdobsy)
truey <- rnorm(nobs,beta1 + beta2*truex, sdy)
obsy <- truey + erry
​
K <- 2
model.data <- list(obsy = obsy,
obsx = obsx,
K = K,
errx = errx,
erry = erry,
N = nobs)
​
NORM_err <-" model{
# Diffuse normal priors for predictors
for (i in 1:K) { beta[i] ~ dnorm(0, 1e-3) }
​
# Uniform prior for standard deviation
tauy <- pow(sigma, -2) # precision
sigma ~ dunif(0, 100) # diffuse prior for standard deviation
​
# Diffuse normal priors for true x
for (i in 1:N){
x[i] ~ dnorm(0,1e-3)
}
​
# Likelihood
for (i in 1:N){
obsy[i] ~ dnorm(y[i],pow(erry[i],-2))
y[i] ~ dnorm(mu[i],tauy)
obsx[i] ~ dnorm(x[i],pow(errx[i],-2))
mu[i] <- beta[1]+beta[2]*x[i]
}
}"
​
# Initial values
inits <- function () {
list(beta = rnorm(K, 0, 0.01))
}
​
# Parameter to display and save
params <- c("beta", "sigma")
​
evfit <- jags(data = model.data,
inits = inits,
parameters = params,
model = textConnection(NORM_err),
n.chains = 3,
n.iter = 5000,
n.thin = 1,
n.burnin = 2500)
​
print(evfit,intervals=c(0.025, 0.975), digits=3)
==================================================
Output on screen:
​
Inference for Bugs model at "3", fit using jags,
3 chains, each with 5000 iterations (first 2500 discarded)
n.sims = 7500 iterations saved
mu.vect sd.vect 2.5% 97.5% Rhat n.eff
beta[1] -4.069 0.135 -4.331 -3.806 1.007 620
beta[2] 6.753 0.058 6.636 6.862 1.008 280
sigma 1.547 0.177 1.191 1.901 1.009 240
deviance 5391.166 51.448 5292.204 5492.494 1.001 6200
For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
DIC info (using the rule, pD = var(deviance)/2)
pD = 1323.4 and DIC = 6714.5
DIC is an estimate of expected predictive error (lower deviance is better).