HSI
From: Bayesian Models for Astrophysical Data, Cambridge Univ. Press
(c) 2017, Joseph M. Hilbe, Rafael S. de Souza and Emille E. O. Ishida
you are kindly asked to include the complete citation if you used this material in a publication
​
​
Code 4.1 Normal linear model in R using JAGS
==================================================
require(R2jags)
​
set.seed(1056) # set seed to replicate example
nobs = 5000 # number of observations in model
x1 <- runif(nobs) # random uniform variable
beta0 = 2.0 # intercept
beta1 = 3.0 # slope or coefficient
xb <- beta0 + beta1 * x1 # linear predictor, xb
y <- rnorm(nobs, xb, sd=1) # create y as adjusted random normal variate
​
# Construct data dictionary
X <- model.matrix(~ 1 + x1)
K <- ncol(X)
model.data <- list(Y = y, # Response variable
X = X, # Predictors
K = K, # Number of predictors including the intercept
N = nobs # Sample size
)
​
# Model set up
NORM <- "model{
# Diffuse normal priors for predictors
for (i in 1:K) { beta[i] ~ dnorm(0, 0.0001) }
# Uniform prior for standard deviation
tau <- pow(sigma, -2) # precision
sigma ~ dunif(0, 100) # standard deviation
# Likelihood function
for (i in 1:N){
Y[i] ~ dnorm(mu[i],tau)
mu[i] <- eta[i]
eta[i] <- inprod(beta[], X[i,])
}
}"
​
# Initial values
inits <- function () {
list(beta = rnorm(K, 0, 0.01))
}
​
# Parameters to be displayed
params <- c("beta", "sigma")
# MCMC
normfit <- jags(data = model.data,
inits = inits,
parameters = params,
model = textConnection(NORM),
n.chains = 3,
n.iter = 15000,
n.thin = 1,
n.burnin = 10000)
​
print(normfit, intervals = c(0.025, 0.975), digits = 2)
​
​
# Plot the chains to assess mixing
source("https://raw.githubusercontent.com/astrobayes/BMAD/master/auxiliar_functions/CH-Figures.R")
out <- normfit$BUGSoutput
MyBUGSChains(out,c(uNames("beta",K),"sigma"))
​
# Display the histograms
out <- normfit$BUGSoutput
MyBUGSHist(out,c(uNames("beta",K),"sigma"))
==================================================
Output on screen:
​
Inference for Bugs model at "4", fit using jags,
3 chains, each with 15000 iterations (first 10000 discarded)
n.sims = 15000 iterations saved
mu.vect sd.vect 2.5% 97.5% Rhat n.eff
beta[1] 1.99 0.03 1.94 2.05 1 15000
beta[2] 3.01 0.05 2.91 3.10 1 15000
sigma 1.00 0.01 0.98 1.02 1 15000
deviance 14175.64 2.39 14172.91 14181.84 1 15000
For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
DIC info (using the rule, pD = var(deviance)/2)
pD = 2.9 and DIC = 14178.5
DIC is an estimate of expected predictive error (lower deviance is better).