HSI
From: Bayesian Models for Astrophysical Data, Cambridge Univ. Press
(c) 2017, Joseph M. Hilbe, Rafael S. de Souza and Emille E. O. Ishida
you are kindly asked to include the complete citation if you used this material in a publication
​
Code 2.3 Example of linear regression in Python.
==================================================
import numpy as np
import statsmodels.formula.api as smf
# Data
y = np.array([13, 15, 9, 17, 8, 5, 19, 23, 10, 7, 10, 6]) # continuous response variable
x1 = np.array([1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0]) # binary predictor
x2 = np.array([1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3]) # categorical predictor
mydata = {} # create data dictionary
mydata['x1'] = x1
mydata['x2'] = x2
mydata['y'] = y
# Fit using ordinary least squares
results = smf.ols(formula = 'y ~ x1 + x2', data = mydata).fit()
# Output
print(str(results.summary()))
==================================================
Output on screen:
​
​
OLS Regression Results
==============================================================================
Dep. Variable: y R-squared: 0.763
Model: OLS Adj. R-squared: 0.711
Method: Least Squares F-statistic: 14.51
Date: Sat, 17 Dec 2016 Prob (F-statistic): 0.00153
Time: 01:22:54 Log-Likelihood: -28.579
No. Observations: 1 AIC: 63.16
Df Residuals: 9 BIC: 64.61
Df Model: 2
Covariance Type: nonrobust
==============================================================================
coef std err t P>|t| [95.0% Conf. Int.]
------------------------------------------------------------------------------------------------------------------------------------
Intercept 38.8333 5.090 7.630 0.000 27.319 50.347
x1 -14.5000 3.024 -4.795 0.001 -21.340 -7.660
x2 -9.8750 1.852 -5.333 0.000 -14.064 -5.686
==============================================================================
Omnibus: 0.687 Durbin-Watson: 2.112
Prob(Omnibus): 0.709 Jarque-Bera (JB): 0.467
Skew: -0.426 Prob(JB): 0.792
Kurtosis: 2.545 Cond. No. 16.5
==============================================================================
Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.