HSI
From: Bayesian Models for Astrophysical Data, Cambridge Univ. Press
(c) 2017, Joseph M. Hilbe, Rafael S. de Souza and Emille E. O. Ishida
you are kindly asked to include the complete citation if you used this material in a publication
​
​
​
​
Code 10.11 Beta model in Python using Stan, for accessing the relationship between the fraction of atomic gas and the galaxy stellar mass
==================================================================================
import numpy as np
import pandas as pd
import pystan
import statsmodels.api as sm
​
# Data
path_to_data = 'https://raw.githubusercontent.com/astrobayes/BMAD/master/data/Section_10p5/f_gas.csv'
​
# read data
data_frame = dict(pd.read_csv(path_to_data))
​
# built atomic gas fraction
y = np.array([data_frame['M_HI'][i] / (data_frame['M_HI'][i] + data_frame['M_STAR'][i])
for i in range(data_frame['M_STAR'].shape[0])])
​
x = np.array([np.log(item) for item in data_frame['M_STAR']])
​
# prepare data for Stan
data = {}
data['Y'] = y
data['X'] = sm.add_constant((x.transpose()))
data['nobs'] = data['X'].shape[0]
data['K'] = data['X'].shape[1]
​
# Fit
stan_code="""
data{
int<lower=0> nobs; # number of data points
int<lower=0> K; # number of coefficients
matrix[nobs, K] X; # stellar mass
real<lower=0, upper=1> Y[nobs]; # atomic gas fraction
}
parameters{
vector[K] beta; # linear predictor coefficients
real<lower=0> theta;
}
model{
vector[nobs] pi;
real a[nobs];
real b[nobs];
for (i in 1:nobs){
pi[i] = inv_logit(X[i] * beta);
a[i] = theta * pi[i];
b[i] = theta * (1 - pi[i]);
}
​
# priors and likelihood
for (i in 1:K) beta[i] ~ normal(0, 100);
theta ~ gamma(0.01, 0.01);
​
Y ~ beta(a, b);
}
"""
​
# Run mcmc
fit = pystan.stan(model_code=stan_code, data=data, iter=7500, chains=3,
warmup=5000, thin=1, n_jobs=3)
​
# Output
print(fit)
==================================================================================
Output on screen:
​
Inference for Stan model: anon_model_28b9722b94e8617cde9b9aefcadeeb91.
3 chains, each with iter=7500; warmup=5000; thin=1;
post-warmup draws per chain=2500, total post-warmup draws=7500.
​
mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
beta[0] 9.24 4.0e-3 0.17 8.9 9.12 9.24 9.36 9.57 1859 1.0
beta[1] -0.42 1.8e-4 7.7e-3 -0.44 -0.43 -0.42 -0.42 -0.41 1856 1.0
theta 11.68 7.8e-3 0.37 10.96 11.43 11.67 11.92 12.43 2308 1.0
lp__ 1165.4 0.03 1.17 1162.4 1164.9 1165.7 1166.3 1166.7 1822 1.0
​
Samples were drawn using NUTS at Wed May 3 18:56:51 2017.
For each parameter, n_eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor on split chains (at
convergence, Rhat=1).